Skip to main content
Main Menu
  • Applications
    Back
    Applications
    • Your Industry
      Back
      Your Industry
      • Automotive
        Back
        Automotive
        • Exterior
        • Interior
        • Chassis
          Back
          Chassis
          • Anti-Theft
          • Pulley Mount
          • Steering Yoke
        • Powertrain
          Back
          Powertrain
          • Throttle Body Motor Mount
      • Bicycle & Scooter
        Back
        Bicycle & Scooter
        • Bicycle
        • eScooter
      • Robotics & Automation
      • Industrial
      • Others
        Back
        Others
        • Residential HVAC
        • Solar
    • Solutions
      Back
      Solutions
      • NORGLIDE®
        Back
        NORGLIDE®
        • NORGLIDE® Bearings and bushings
        • Why NORGLIDE® Bearings and bushings?
        • NORGLIDE® Metal Backed Bearings
        • NORGLIDE® Plain Composite – INTERLAYER – Bearings
        • NORGLIDE® Metaloplast
        • NORGLIDE® Compound-Tape
        • How to Assemble NORGLIDE® Bushings
      • RENCOL®
        Back
        RENCOL®
        • What is a Tolerance Ring?
        • How does a Tolerance Ring work?
        • How are RENCOL® Tolerance Rings designed?
        • Tolerance Ring Types
        • How to Assemble a Tolerance Ring
        • Tolerance Ring Materials
      • SPRINGLIDE™
      • Capabilities
        Back
        Capabilities
        • Testing Services
        • Hackathon's
        • Custom-made Components
        • Semi - Anechoic Chamber
        • Tech Days
    • About us
    • Media Center
      Back
      Media Center
      • Resource Library
      • Blog
        Back
        Blog
      • Contact Us
      world SAINT-GOBAIN
      Logo Saint-Gobain MAKING A BIG DIFFERENCE
      • Applications
      • Your Industry
        • Automotive
          • Exterior
          • Interior
          • Chassis
            • Anti-Theft
            • Pulley Mount
            • Steering Yoke
          • Powertrain
            • Throttle Body Motor Mount
        • Bicycle & Scooter
          • Bicycle
          • eScooter
        • Robotics & Automation
        • Industrial
        • Others
          • Residential HVAC
          • Solar
      • Solutions
        • NORGLIDE® Bearings
          • NORGLIDE® Bearings and bushings
          • Why NORGLIDE® Bearings and bushings?
          • NORGLIDE® Metal Backed Bearings
          • NORGLIDE® Plain Composite – INTERLAYER – Bearings
          • NORGLIDE® Metaloplast
          • NORGLIDE® Compound-Tape
          • How to Assemble NORGLIDE® Bushings
        • RENCOL® Tolerance Rings
          • What is a Tolerance Ring?
          • How does a Tolerance Ring work?
          • How are RENCOL® Tolerance Rings designed?
          • Tolerance Ring Types
          • How to Assemble a Tolerance Ring
          • Tolerance Ring Materials
        • SPRINGLIDE™ Energised Bearings
        • Capabilities
          • Testing Services
          • Hackathon's
          • Custom-made Components
          • Tech Days
          • Semi - Anechoic Chamber
      • About us
      • Media Center
        • Resource Library
        • Blog
      • Contact Us

      You are here

      1. Home
      2. Solutions
      3. RENCOL®
      4. How does a Tolerance Ring work?

      RENCOL®

      RENCOL®  

      What is a Tolerance Ring?

      How does a Tolerance Ring work?

      How are RENCOL® Tolerance Rings designed?

      RENCOL® Tolerance Ring Types

      How to Assemble a Tolerance Ring

      Tolerance Ring Material

      • Return to Solutions

      CONTACT US

       

      How does a Tolerance Ring work?

      The waves or features around the tolerance ring compress like springs. But how does this actually create the forces to hold everything together? Well, this is down to simple spring theory!

       

      What is the Spring Theory?

      Hookes Law

      Hooke’s Law of elasticity gives a basic understanding of how tolerance rings work and is summarized by the equation on the left. It essentially says that the force needed to extend or compress a spring is directly proportional to the distance displaced (it actually says this for all materials, but we are talking springs here).  

       

      When we look at the tolerance ring, the main part of this formula is K, or what we call the spring constant. This is essentially the stiffness of each of the waves added together – the greater the stiffness, the more force is needed to compress the tolerance ring the same amount.

      The stiffness of the tolerance ring can be changed in a number of ways including 

      • Young’s modulus of the material
      • Material thickness
      • Shape of the waves

      For a very simple tolerance ring the spring constant can be approximated using these factors in this equation:

      K = 4.8 E w (t/p)3

      Where: 

      • E is the Elastic Modulus for the material [kN/mm²]
      • w is the width of the wave [mm]
      • t is the material thickness [mm]
      • p is the wave pitch [mm]
      Tolerance Ring Principle

      In reality this equation is too simplistic and doesn’t account for many factors. At Saint-Gobain we use sophisticated predictive design tools are used to calculate the performance of the tolerance ring. To take a look at how our engineers take you through the design process look at How are RENCOL® Tolerance Rings designed?. 
       

       

      Applying spring theory in practice

      Tolerance Ring compression curve

      Applying the above spring theory to the design of a tolerance ring gives the ability to tune the spring stiffness for a wide range of applications and performance requirements. For example; a stiff wave geometry can be developed for applications with high radial load or torque requirements. Alternatively using a gentler wave geometry will generate a lower stiffness for applications with low loading requirements.

      This design flexibility allows the tolerance rings to be specifically designed for each application by varying a combination of; the complex ring geometry, material thickness, hardness and operating compression range to create an appropriate spring constant and hence a pre-determined retention forces and/or slip torques. 

      In order to work out the true spring rate in practice, a compression test is normally done. A tolerance ring would be put into a tensile tester and compressed. The output shows what force the ring generates at certain amounts of compression. This data can then be used to validate predictions and also calculate other performance criteria (such as torque and slip).

       

      Working out other performance criteria

      The above equation gives you the radial force FR. This is useful to know to understand how much force the tolerance ring is putting onto mating components, but usually the axial force FA and the torque T is needed, too.
      Again, in theory these are fairly simple calculations. The axial force FA can be calculated by multiplying the radial force FR by the friction coefficient μ:

      FA = FR * µ

      And the torque T by simply multiplying the axial force FA by half the ring diameter r:

      T = FA * r

      Again, these formulas will give a rough indication of performance, but in reality there are many factors that affect these such as material deformation, ‘ploughing’ effect of the waves on component and others. Because of this our engineers have developed sophisticated design tools that take into account these factors and allow us to predict the performance much more accurately.

      If you would like to find out if a RENCOL® Tolerance Ring is suitable for you, contact us.

      About Saint-Gobain

      Saint-Gobain designs, manufactures and distributes materials and solutions which are key ingredients in the wellbeing of each of us and the future of all. They can be found everywhere in our living places and our daily life: in buildings, transportation, infrastructure and in so many industrial applications.

       

      Saint-Gobain Performance Plastics' group of businesses gather solutions to save energy, provide protection, improve comfort and sustain the environment for a variety of markets.

                               MENU

      Applications
      Your Industry
      Solutions
      About us
        
      Media Center
      Site Map
      Imprint/Legal
      Privacy Policy
      CATSCA

      2015 UK Modern Slavery Act

       

       

       

       

      FOLLOW US

       
      •  
      • Linked In, Saint-Gobain NORGLIDE & RENCOL
      • YouTube, Saint-Gobain NORGLIDE & RENCOL

       

       CONTACT US

      Copyright 2023 Saint-Gobain Performance Plastics Pampus GmbH. All rights reserved.